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constraints of the Kadomtsev-Petviashvili equation 
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Department of Mathematics, University of Science and Technology of China, Hefei, 
Anhui 230026. PR China 

Received 16 September 1991, in final form 20 January I992 

Abstract. In this paper we consider linear problems associated with the Kadomtsev- 
Petviashvili equation. We prove that the linear problems are (1 + 1)-dimensional Hamil- 
tonian systems under the symmetry constraints. Moreover, we find that the Hamiltonian 
Raws of the linear problems are commutative. 

1. Introduction 

It has been shown in [ 1-81 that the linear system of a integrable (1 + 1)-dimensional 
system can be constrained to the integrable system of finite dimension (i.e. 0 + 1  
dimension). Recently the above study has also been generalized to soliton equations 
in two spatial and one temporal (i.e. 2+1)  dimensions [9-121. The main reasons for 
this research are that on the one hand, some kinds of solutions of a (d + 1)-dimensional 
(d  = 1 or 2) system can be obtained by solving the d-dimensional systems reduced 
from it, and on the other, the constraint offers a way to study the properties of a 
d-dimension of system from those of a ( d +  1)-dimensional one. 

In [9], Yi Cheng and Yishen Li considered the linear problems 

and 

associated with the Kadomtsev-Petviashvili ( KP) equation 
3 - I  U, =$U,, + 3uu, +aD uyv. 

Under !he constraint condition 

(1.la) 

(1.lb) 

(1.2~2) 

(1.26) 

(1.3) 

K n z  u X = ( W * ) x  (1.4) 

they prove that the systems of (1.1) and (1.2) are the second and third equations of 
the AKNS hierarchy respectively, and they get a new kind of solution of the KP equation. 
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Konopelchenko et a1 [IO] proved that the system (1.1) is the (1 t I)-dimensional 
Hamiltonian system under the constraint conditions 

Kn = k ( W * L  n=O,1,2 
where K .  are the first three symmetries of the KP equation. However, they have not 
proved that the system (1.1) is the (I  +I)-dimensional Hamiltonian system under the 
general symmetry constraint condition 

K. = k(++*jx n E N u  {uj. (i .5j  
Also they have no ideas to prove that the system (1.2) is (1 t 1)-dimensional Hamiltonian 
system. 

The purpose of this paper is to prove that systems (1.1) and (1.2) are the 
(1 + 1)-dimensional Hamiltonian systems by any higher-order symmetry constraint 
condition of (1.5) and their Hamiltonian flows are commutative in pairs. The deeper 
results, such as a common infinite set of involutive integrals, can be obtained by using 
the Adler-Kostant-Symes theorem, which will be left to the sequel [12]. 

For convenience, in section 2, a brief introduction to Sato’s theory will be given. 
In section 3, we prove that systems (1.1) and (1.2) are the 1 + I-dimensional Hamiltonian 
systems by any higher-order symmetry constraint. Finally, in section 4, we prove that 
the Hamiltonian flows of (1.1) and (1.2) are commutative in pairs. 

2. Sato’s tbwry 113-151 

In this section, we shall describe the framework of Sato’s theory. The notions of 
n-reduction and n-reduction stationary Sato’s equation (n-nssE) will be introduced. 
Moreover, the Hamiltonian formulation for n-RssE will be given. 

Let us introduce a microdifferential operator 
I 

L = ui D‘ = D t  U-, D-‘ + u_,D-2t.  . . (2.1) 

where we assume U ,  = 1, u0 = 0 and U - , ,  U-,. . . . are to be functions of an infinite set 
of variables f = (x, r,, I,, . . .). The operator D = d/dx is the usual differential operator, 
iis inverse powers E-’, X2, , . . may be iegaided as foiiiiii: iiiizgiaiioii apeiatoia actiiig 
via the Leibniz rule 

;=-m 

Here,fis the multiplication operator given by a functionf(r) andf(”= (d’/dx’)f with (1) - i(i-I) ... ( i - j + l )  - 
j! 

The coefficients in (2.2) are defined for arbitrary integers i such that, for negative i, 
the application of the integration D’ is defined as infinite expansion (2.2) into negative 

For any formal pseudodifferential operator X = 11- X,D’ we split this operator 
power of D. 

into its positive and its negative parts defined by  
--I 

X+= X,D’ and X_= 1 XID, 
,=0 ,=-m 

respectively. 
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We can easily get the nonlinear evolution equation 

d d 
-L,"--L; =[L;, LT] 
df. dt, 

from the Lax equation 

(2.3) 

(2.4) 

Now, we introduce the following notation which will be useful in later discussion. 

Definition I .  We state L to be n-reduction if there exists a least natural number n such 
that L: = L". 

Definifion 2. The equation 

d 
-L"=[LT,L"]=[Ln,L!] 
d tm 

is called an n-RssE if L has n-reduction. 

Exampie i. if i has i-reduction, i.e. ji6j 

L = ( D2 + 2 U-,) 

=D+u_,D-'- l  2u-1 ( ' )D-2+~(ul: 'D-2+~(u'_:)-2u~,)D-3+.  . 
equation (2.4) reads as the Kdv hierarchy ( m  = 2k + 1). In particular ( m  = 3),  (2.4) 
reads as the Kdv equation 

(2.5) -1 3 ,,--,u,,+Pu,. 

Example 2. If L has 3-reduction, i.e. [ 161 

L =  (D3+3u_,D+3u~~+3u_2)"3 

= D +  u_,D-'+ U _ ~ D - ~ + ( - ~ U ? ~ -  U?;+ u?,)D-'+. 

equation (2.4) becomes the Boussinesq hierarchy. Moverover equation (2.4) becomes 
the Boussinesq equation 

(2.6) 
if m =2.  

In order to obtain the Hamiltonian formulation for equation (2.4). we recall the 
results of Adler [17]. In his paper, Adler proved that the n-RssE (2.4) is an integrable 
Hamiltonian system in 1 + 1-dimensions, and he also gave the involutive conserved laws 

3 au,,2+(aux,+tuux), = 0 

Here the trace of a pseudodifferential operator was introduced as the integration of 
the coefficient of D-', i.e. 

tr(. . .+a-2D-2+a-,D-'+ao+ a,D+.  . .) = a - ,  . 
However, in this paper, we use the method of Mumford [18] to find the following 
results which are similar to the results of [19]. 
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7Xeorem 1. Let 

L" = aj,nD' a,. = 1 a"-l," = o  and L"= 1 D-iP-i,m 
j - 0  i = ,  

then n-RSSE (2.4) can be written as the following Hamiltonian system. 

Bing Xu and Yishen Li 

m 

where 

is the variational derivative [17-19] 

and 

Furthermore, equation (2.7) has a common infinite set of conserved densities 
which are in involution in pairs 

E N) 

{H,G}-tr(L"[dH,dG])= 1 - -0 (2.10) 

where the notationf- 0 means tha t f=  Dg for some g and (.), the j th  element of (.). 

3. Hamiltonian systems 

The aim of this section is to prove that the linear problems (1 .1)  and (1.2) are the 
Hamiltonian systems in 1 + I-dimensions under the constraint conditions (1.5). 

As we know, the x-derivative of the squared eigenfunction ++* is the generating 
function for symmetries of the KP equation, i.e. the function ($$*)= is the symmetry 
of the KP equation and it can deduce a series of symmetries of the RP equation if $ 
and $* satisfy (1.1) and (1.2) respectively [10,20-221. 

Now we choose m = 2 in (2.3); we can obtain a series of symmetries 

1 d  
L I  = -( 2 --r: dt2 + [L;, Li]) n = 1,2 , .  . . . 
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We consider the linear system (A) 

*,= *xx+2u-,* 
U-, = U (A) ** - -  f2 -  $,-2u-,** * 

( 1 . l a )  
(1.lb) 

for fixed n. For system (A) we have the following theorem. 

Theorem 2. System (A) for fixed n is a (1 + 1)-dimensional Hamiltonian system which 
can be written as 

where the conserved density 

and 

Moreover, the Poisson bracket is defined by 

for the conserved densities 6 and &, here 
0 0 ... 0 

B , .  = ( A , .  I). 
-1 0 ... 0 0 

RooJ From (3.1) we get 
d -L:=[L:, LL:]+Z(***),. 

dh 
Using theorem 1, we obtain 

where H2+" = n / ( 2 + n )  tr(L:)'nt2)'n, 

(3.3) 

(3.4) 
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To take (2.9) and (2.1) into account, we find A , {  = n D  and ~ - , = ( l / n ) m ~ - , , ~  
respectively, thus system (A) can be rewritten as 

where 

Finally by using (2.10) we easily get (3.3). This ends the proof of the theorem. 0 

Examples. As the first and simplest example, we choose the constraint condition 
KO- U, = (+$*),, then (3.2) becomes as 

(3.7) 

where fi,., = (*= +Z$$*)$*. This is the second equation of the AKNS hierarchy. 
Next, we choose the constraint K, = U,>= ($$*),, then (3.2) yields 

0 0  
(a:.) =( 0 2D ") 6($, "'" a0.2. **) 

** f, -1 0 0 
(3.8) 

where k,,, = ( $xx + ao,&)$*. This system is closely connected with the Yajima-Oikawa 
system [23]. 

Now we consider system (B) 

$t3 = IL- +3u-iJI, +%I,+ -?(D-'u-I~)@ (3.9a) 

(B) ~ ~ ~ + 3 ~ - , ~ t + t ~ - ~ , ~ * - ~ ( D - ' u - ~ ~ ) $ *  (3.96) 

K,-,=-(-L:+[L:, 1 d  L:I) = ( w * ~  
2 dt, 

for the same fixed n. 
First, we give the following lemmas which will be useful in later discussion. 

Lemma 1. The constraint condition (3 .1)  is equivalent to the following constraint 
condition: 

(3.10) 
d 

-L:+[L:, L:l =3(1LV)xD+3(ILx#*)x. 
d f, 

ProoJ (i) We assume that (3.1) is true; let us denote 

(3.11) 
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and suppose A =X:=o A,D'. Here A,(i = 0, 1, . . . , n) are the functions. Hence we get 

(3.12) 
d 

-L:=[L:,L;]+2Kn-, (2Kn-1 = 2 ( + J I * ) x )  
d 12 

d 
-L: = [L:, L:] +A. 
dt3 

(3.13) 

Using the Jacobian identity, the KP equation and (3.12) and (3.13), we find 

[L:, Al+2Kn-,,3 = [L:, 2K.-,1+A,2. (3.14) 

Now inserting L:=D2+2u_,, L : = D ' + ~ U _ , D + ~ U ( ~ , ) + ~ ( D - ~ U _ , _ )  and A=XY=oAA,D' 
into (3.14), we obtain 

A,=O (i =2,3, .  . . , n )  (3.15) 

(3.16) 

Ay'+2Ab')-6K(2) "-1 = A  'I2 (3.17) 

Ag' - 2Alu?'j -2K !,,I1 - 6 ~ _ ~ K ? i  = Ao,> - Kn-,,, . (3.18) 

2A'l!-6K'l' - 
I "-1-0 

Solving the equations (3.15)-(3.19), we finally get 

Ai=O ( i=2 , .  . . , n )  (3.15) 

Ai=3(JIJI*)x (3.19) 

Ao=3(W*)x.  (3.20) 

This proves lemma 1 on one hand. 
(ii) On the other hand, if we suppose that (3.10) is true, condition (3.1) can be 

obtained by using a similar method. 
0 inis enus m e  prow U, ic~~iiria I .  -:- .->. _L. _.__ r _ r ,  

Lemma 2. System (B) can be written as system (C): 

(3.210) 

(3.216) 

Proooof: Let us put L:=X:=oaa,.D and L:=DZ+(2/n)a.-,,. into (3.1); we find 

a.-* .",* =2a'.i,,.+(~-n)ak?~.. 
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i.e 

Bing Xu and Yishen Li 

2 2-n 
D-'U -:,* +-a(') "-2," (3.22) n n 

and taking (1.2) into account we easily obtain the result. This ends the proof, 0 

Fi!!.!!y, we prove !he !.st of !he theorems in this sectian 

'Theorem 3. System (B) for the same n is a (l+l)-dimensional Hamiltonian system 
which reads as 

(3.23) 

where 

. 3 IL +-a.-3,*)** 3 
(3.24) 

n 

and the Poisson bracket is the same as (3.3). 

Proof: First, as a result of direct calculus of variations [17,24], we find 

Sf i3 .n  S H 3 + n  I 3 ++*. 

To take into account A!,:-:,= = nD and 

- 
Sa.-3,, Sa.-,,. n 

=;(3n - n2)D2; we obtain 

(3.25) 

(3.26) 

and 

(3.28) 
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Next we recall that lemma 2 yields that system (B) is equivalent to system (C). As 
(3.10) can be decomposed in the form 

comparing (3.29) with (3.26)-(3.28), we can rewrite (3.29) as follows: 

Finally from (3.21) we can easily write (1.2) as 

Jls= 8fi3, . lSV 

*:=--8f i ,JS* 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

by using the definition of S/Su.  

written as the form of (3.23), and its conserved density is 
Therefore we can write (3.30)-(3.32) in the form of (3.23), i.e. system (B)  can be 

and the Poisson bracket 
U is the same as (3.3). This ends the proof. 

4. Involutive C O O S ~ N ~ ~  densities 

We are now in a position to prove that the conserved densities fi2," and f i3 . .  are 
involutive. 

Theorem 4. If fi2." and fi3," are the conserved densities mentioned in theorems 2 and 
3 respectively, then 

{ f i 2 , " .  fi3.d-0.  (4.1) 

Proof: To prove (4.1) is equivalent to proving that 

i.e. 

(4.2) 

( 4 . 2 ~ ~ )  

where (.)' means the transposition. 
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Substituting the forms of &. and &. into (4.2), we obtain 

Therefore, we only need to prove 

T 
I 

A,"  

-1 

into (4.3), as a result of arduous calculations, we obtain 
the left-hand side of (4.3) 

- 0. 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.90) 

(4.96) 
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where we have used that [17,19,24] 

This ends the proof of this theorem. 0 

5. Remarks 

It is natural to generalize the constraints used in this paper to the whole KP hierarchy, 
i.e. we can consider the system 

IL,, = L,"Q 

*f, = -L,"*$* m, n = 1,2, . 

where L,"' is the differential operator formally adjoint to the operator L,". 
We would like to indicate that a common infinite set of conserved densities can be 

obtained for this system by using the Lie algebraic framework [12], and that similar 
results for other 2+ 1-dimensional nonlinear equations, such as the Davey-Stewartson 
hierarchy, etc. will be left to the sequel. 
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